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Our goal, in this short overview article, is to begin map-
ping the landscape of methods for accountability of 
artificial intelligence (AI) systems. For our purposes, 

we shall define accountability as being able to ascertain 
whether an AI system is behaving as promised, which is nec-
essary for determining blame-worthiness. In the context of 
a self-driving car, AI system accountability could be a ques-
tion of safety; in the context of credit scoring, AI system 
accountability could be a question of fairness. In an algo-
rithmic trading system, the AI system accountability could 
be a question of performance and robustness to certain 
shocks. In this overview, we will not focus on any particular 
objective (such as safety, fairness, or robustness); we believe 
that defining and refining these objectives for each context 
is a moral decision that must be made by the public and 
their representatives, not technologists. Rather, our goal is 
to begin the process of mapping the categories of methods 
that one could use to assess whether an AI system is meeting 
its objectives.

Artificial intelligence systems have 
provided us with many everyday con-
veniences. We can easily search for 
information across millions of web-
pages via text and voice. Paperwork 
processing is increasingly automated.  
Artificial intelligence systems flag poten-
tially fraudulent credit-card transac-
tions and filter our e-mail. Yet these 
artificial intelligence systems have 
also experienced significant failings.  
Across a range of applications, including 
loan approvals, disease severity scores, 
hiring algorithms, and face recognition, 
artificial-intelligence–based scoring sys-
tems have exhibited gender and racial 
bias. Self-driving cars have had serious 
accidents. As these systems become more 
prevalent, it is increasingly important 
that we identify the best ways to keep 
them accountable.
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Especially as cases involving AI system behaviors 
are adjudicated via litigation and prescribed via reg-
ulation and legislation, thinking about methods for 
accountability is essential. In this article, we describe 
several categories of approaches for accountability 
in AI systems: transparency (data and process and 
open-source software); interpretable models; post 
hoc inspection of model outputs; empirical perfor-
mance (pre-market and post-market); and properties 
guaranteed by design. While this list is colored by 
our experiences in interpretability and health, and by 
no means exhaustive, we believe it provides a menu 
that begins to cover mechanisms for accountability 
appropriate for a wide variety of real-world contexts 
and objectives. Each category has different tradeoffs 
with respect to the kinds of infrastructure and real-
time human involvement required, as well as risk of 
exposing sensitive information or trade secrets. The 
right choice will depend on the specific context, and 
will likely require AI experts, human factors experts, 
domain experts, and policymakers to come together 
to understand the tradeoffs from all angles.

Transparency (Data and  
Process; Open-Source Software)

Our first set of mechanisms for achieving account-
ability involves transparency in data, process, and 
software. We divide these into two major categories: 
process transparency (exposing how the AI system 
came to be before it was deployed, including data 
collection, data processing, modeling choices, and 
training quality); and software transparency (releas-
ing code).

Approaches
Process transparency recognizes that the choice of 
data and training have a huge effect on the output of 
an AI system. Gebru et al. (2018) advocate for a con-
sistent, unified way of summarizing what kinds of 
data were used to train a model. Mitchell et al. (2019) 
describes an analogous approach for describing the 
models and algorithms that a system uses to make 
predictions, including relevant parameter and training 
choices. Software transparency gives people the ability 
to inspect, and perhaps even run, the AI system’s 
actual code. One can release the code needed to train 
a system as well as the final code for the trained system  
(including values of all trained coefficients and 
parameters). Recently, there have also been efforts 
to encourage sharing not only the code but also the 
environment in which the code was run, to help with 
issues surrounding data libraries and compatibility 
(for example, Forde et al. 2018).

Benefits
Many applications have errors that come from prob-
lems with the data. Thus, even knowing what data 
and labels were used, and how they were preproc-
essed, can provide important insights. Might one expect 
face-detection for auto-focus algorithms, trained largely 

on pale faces, to work well on darker faces? Would 
we trust a clinical risk-scoring system differently if 
the labels were provided by an expert doctor, or by 
a medical student instead? One may also notice that 
key variables were not included, such as a drug rec-
ommendation system that considers the patient’s 
current vitals, but not their prior history; or interac-
tions that were missing, such as a linear model used 
to make predictions from raw pixel data. More gen-
erally, data and model transparency allow one to 
assess how likely issues of data shift, mislabeling, 
missing-ness, and bias may have occurred. Having 
the code available allows one to check for specific 
bugs and identify previously unnoticed limitations. 
If the environment is also available, then anyone 
can simulate the system for what it would do in var-
ious scenarios.

Limitations
Information provided by process transparency that 
is simply descriptive can help someone guess where 
problems might lie, but may not be sufficient to con-
firm that a problem does not exist. For example, per-
haps the lane-following algorithm of the self-driving 
car that was trained in sunny places does continue 
to work in snowy places: we simply don’t know.  
Process transparency can tell us we might want to 
check if the car will drive properly in snowy places, 
but it cannot tell us whether the car will actually be 
safe. In contrast, software transparency does techni-
cally let us test how the AI system may behave in 
different scenarios, but just having the code availa-
ble does not mean it is readable; complex AI systems 
may have millions of lines of code and millions of 
parameters. Thus, simply inspecting the lines of code 
may not provide the needed insights and may also 
require significant domain expertise. And it can’t be 
ignored that software transparency may expose trade 
secrets and other information that might discourage 
innovation within the private sector.

Interpretable Models
Another way to ensure that the model is working as 
expected is to build a model that is inherently easy 
for humans to understand. This generally entails 
structuring the model in a specific way (for example, a 
parametric form, as part of a model, selects the most 
relevant training example for a prediction). Impor-
tantly, the model and the explanation of it are the 
same; we have made a purposeful effort to ensure 
that humans can understand the full, true AI system.

Approaches
There are many kinds of interpretable models, 
including many that predate the recent rise of AI. 
One category of approach employs regularizers (for 
example, the L1 norm) on existing models to reduce 
the number of nonzero parameters, and render them 
easier for humans to understand. Another category 
uses logic-based or symbolic models. For example,  
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decision trees allow humans to follow a set of logic 
parameters (for example, AND, OR) and rules (for 
example, patient age > 30) to show how it reached  
a prediction. More recently, building simple, yet 
expressive models (see Doshi-Velez, Wallace, and 
Adams 2015; Gupta et al. 2016; Kim, Rudin and 
Shah 2014; Kim, Shah, and Doshi-Velez 2015; Lou, 
Caruana, and Gehrke 2012; Ustun and Rudin 2014) 
has been widely studied in AI. Lou, Caruana, and 
Gehrke (2012) built a model such that the impact of 
each input feature (such as age) on the prediction is 
always linear or second-order (such as two features 
at a time). This enables humans to investigate a pre-
diction in a modular way by, for example, plotting 
a partialML dependency plot for each feature. Yet 
another category uses exemplars to ground predic-
tion or clustering decisions (Hase et al. 2019; Kim, 
Rudin, and Shah 2014).

Benefits
Inherently interpretable models offer inspectable 
internal representations. The fact that the model’s  
explanations were part of the predictions (for example, 
the model had to simultaneously consider how 
to explain while making a prediction) gives the 
user more confidence and may reduce chances of 
potentially conflicting explanations (as happens 
in the post hoc interpretable methods below). In 
Kim, Rudin, and Shah (2014), the model uses sim-
ilarities between a data point and exemplars in 
each cluster to do clustering, and these examples 
themselves are the explanations. In addition, there 
is more room for customization; the form of expla-
nation that works best may differ across domains. 
By considering the explanation, the model, and 
the domain at the time of design rather than later, 
one can maximally customize for the method that 
is best for their problem. Especially in high-stakes 
situations, one can argue that interpretable models 
are the moral gold standard for accountability 
(Rudin 2019) because anyone can truly understand 
what the AI system is doing.

Limitations
Especially in domains with a large amount of 
inherent stochasticity, it is generally possible to 
find models that are both human-interpretable as 
well as highly predictive, as noted above. However, 
this is not always the case: For example, in com-
puter vision, convolutional neural networks out-
perform other models by a big margin but remain 
hard to interpret. Another limitation is that while 
building a new, interpretable model from scratch is 
a viable solution in some cases, it may not always 
be possible. For example, in a big company with a 
long history of building models and an accumu-
lated code-base and much expertise, one may be 
in a situation where they would have to work with 
an existing model. As with software transparency, 
one might also worry that sharing the model may 
expose trade secrets.

Post Hoc  
Inspection of Model Outputs

While interpretable models attempt to make the 
true internals of the AI system understandable to 
humans, post hoc inspection methods allow one 
to identify properties of an already developed AI 
system. These inspections can be used to deter-
mine whether the AI system has behaved incor-
rectly or inappropriately, providing a mechanism 
for accountability.

Approaches
There are three main categories of post hoc interpret-
ability methods: visualization; classic statistical 
methods; and algorithmic methods.

Visualization: These methods include either pro-
jecting high-dimensional data/results onto three 
or fewer dimensions (McInnes, Healy, and Melville 
2018; van der Maaten and Hinton 2008) or else 
better developing a user interface and workflow1 
to reduce the burden of parsing the information. 
Statistical methods: Conducting rigorous classic 
statistical tests (for example, qq plots, sensitivity 
tests, and influence functions) is another powerful 
way to inspect model performance or data charac-
teristics. Algorithmic methods: Some algorithmic 
methods resemble classic sensitivity tests, using 
input features such as saliency maps (Selvaraju et al.  
2016; Smilkov et al. 2017; Sundararajan, Taly, and 
Yan 2017) or higher-level concepts such as testing 
with concept activation vectors (Kim et al. 2018), 
and others leverage statistical methods (Koh and 
Liang 2017). For each data point, saliency maps and 
saliency testing with concept-activation vectors 
outputs weights for each input feature/concept — 
indicating how sensitive each input feature is to 
the prediction.

Benefits
The explanations provided by post hoc methods 
could provide insights to humans, whether by 
confirming their hypothesis (for example, is my 
model biased toward older people?) or exposing 
something new (for example, wait, why are pixels 
on the person in front of a cash machine picture 
highlighted when prediction is trying to detect a 
cash machine?). Many of these approaches can be 
applied to black-box models, meaning that one 
does not need internals of the model for inves-
tigate, only the ability to put in certain inputs and 
observe the outputs. Thus, they expose the model’s 
internals less overtly. Together, these benefits increase 
the ability of external agencies, who may have 
limited access or permissions to the model, to still 
investigate it. Like the previous approaches, by try-
ing to expose all the relevant factors for how an AI 
system works, rather than only the ones queried, 
these post hoc methods enable people to discover 
flaws that they were not originally looking for 
(unknown unknowns).
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Limitations
Most of these methods are subject to human biases. 
For example, it was recently discovered that sali-
ency maps, supposed to explain a prediction, are 
produced without much consideration of prediction 
(Adebayo et al. 2018; Nie, Zhang, and Patel 2018; 
Ulyanov, Vedaldi, and Lempitsky 2017). Julius 
Adebayo et al. (2018) pointed out that many saliency 
map methods produce visually and quantitatively sim-
ilar maps when applied to a trained network and an 
untrained or random network (which makes random 
predictions). How did we not know this earlier? 
Partly because saliency maps were showing “what we 
expected to see,” a classic example of confirmation 
bias. However, interestingly, some of these methods 
empirically show that their maps help humans com-
plete a task better or faster. These conflicting results 
highlight the need for expertise in human–computer 
interaction with AI: we need human subject studies 
to find which aspects of these post hoc interpreta-
tions are the most helpful to humans in identifying 
faults when they do exist (while also avoiding con-
firmation bias). And finally, for the many post hoc 
interpretation methods that are focused on under-
standing a specific prediction, these explanations 
may not allow an expert to understand how a system 
may work overall.

Empirical Performance  
(Pre-Market and Post-Market)

So far, all of the methods above have focused on 
ways to somehow understand an AI system and its 
limitations — that is, interpretability methods. We 
now turn to methods for accountability that provide 
humans some kind of evidence that does not require 
them to understand anything about the model. In 
this section, we focus on empirical evidence.

Approaches
The key idea here is that we are interested in the AI 
system being accountable with respect to certain 
objectives such as safety, fairness, or performance. If 
those goals can be quantified, we can simply measure 
to what extent an AI system is meeting those goals. 
For example, part of a pre-market safety process for a 
self-driving car may involve measuring certain kinds 
of safety violations (such as near misses) in a variety of 
settings over a series of test runs. A recent US Fed-
eral Department of Agriculture approval process for 
a deep learning-based image processing system in 
medicine involved comparing the performance of 
experts with and without the AI system in a vari-
ety of settings.2 This performance can continue to 
be evaluated post-market through reporting systems 
for adverse events and regular audits. One also has 
many choices for who does the checks and moni-
toring. It could be a relevant government body (US 
Federal Department of Agriculture, US Environmental 
Protection Agency), a watch-dog organization, or 
internally, by a company.

Benefits
Unlike the previous approaches, approaches based 
on pre-market checks and post-market monitoring 
don’t require a human to understand the model, in 
any form. All that is needed is input to the model, or 
even some key statistics from the input (for example,  
race), and the output. It can be applied to AI systems 
such as credit scoring that are running relatively 
autonomously at high volume. It can track small 
errors that accumulate over time (for example, many 
small disparities in loan decisions) that methods  
focused on interpretability or human checks may 
miss. It can tell us when the rate of errors shifts, 
which may suggest that the current data streams 
are no longer like the original training stream. And 
unlike approaches such as process transparency that 
can highlight when there may be an issue, moni-
toring can tell us when there is an issue. Post-market  
monitoring also requires relatively little work if 
the AI system is updated in small ways; no human 
is needed to recheck the model, but one still has a 
mechanism to catch unexpected events. And no sys-
tem internals need to be revealed.

Limitations
The biggest limitation is logistical: requiring that 
a set of measurements be taken requires consensus 
between technology and policymakers on what sys-
tems should be monitored and how, and it requires 
personnel to carry out that work over an extended 
period. One must also generally decide, in advance, 
the type of data to be collected. In some cases, the 
choice of protected categories may be clear (for 
example, race, gender, or age in a lending applica-
tion), but it won’t be able to provide insights about 
whether the AI system is not serving an unexpected 
population well, or catch why issues are occurring 
(for example, whether a problem is a model issue or 
an adversarial attack).

Properties Guaranteed by Design
Our final general category of approaches to account-
ability also doesn’t require a human to understand a 
system, and does not even require data: sometimes 
models or training procedures can be created in 
which certain properties are guaranteed by design.

Approaches
In general, each desired property will require a dif-
ferent modeling or training procedure. Bounded- 
Lipschitz networks (Anil, Lucas, and Grosse 2018) 
ensure that changes in the input will never have 
more than a prespecified size of effect on the output.  
Monotone models (You et al. 2017 ensure that 
increasing a feature (although others are held con-
stant) will always increase or decrease the output 
(which may be a valuable guarantee such as in a 
credit scoring system, where we may want to guaran-
tee that increasing income will increase the score). In 
the privacy and data ownership space, there is now a 
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large body of work on machine learning mechanisms 
that are provably differentially private under certain 
assumptions (Chaudhuri, Monteleoni, and Sarwate 
2011), federated learning algorithms that guarantee 
that data can stay in an individual’s device for better  
privacy (McMahan et al. 2016), and algorithms that 
give the user the right to be forgotten (Ginart 
et al. 2019). There are algorithms that are provably 
robust to various kinds of data attacks and poisoning 
schemes (Steinhardt et al. 2017). Similarly, one can 
prove that certain algorithms will satisfy certain fair-
ness definitions.

Benefits
When they can be found, the advantage of tech-
niques with guarantees is that we know that they 
will hold (if the underlying assumptions hold). No 
understanding of the system is needed; little moni-
toring is needed. Nothing about the system needs to 
be exposed.

Limitations
The main drawback is that it is often hard to get 
guarantees to hold for real scenarios. Algorithms that 
have guarantees based on some assumption (for 
example, independent and identically distributed 
data) will generally lose the guarantees when the 
assumption is no longer true. On the flip side, forcing 
an algorithm to have guarantees across a range of set-
tings may reduce its prediction quality overall, while 
another algorithm satisfying the guarantee most of 
the time but not always might perform much better. 
One must carefully understand these tradeoffs.

Conclusion
We have described several general categories of 
mechanisms for accountability in AI systems. We 
emphasize that our list is not exhaustive, and we 
will have to develop additional categories as needs 
arise. This will be made possible with work from 
AI experts, human–computer interaction experts, 
policy and technical experts, and many others with 
relevant expertise.

Finally, we emphasize that the mechanisms listed 
above presume that accountability has somehow 
been defined: there is some definition of fairness, 
and some notion of safety. The biggest difference 
between accountability for AI systems versus other 
systems is that these systems are forcing us to quan-
tify our values. Some domains are more ready than 
others: For example, airline and car industries have 
established accountability with respect to safety 
through guidelines and tests. These guidelines are 
sometimes found to be incomplete, or subverted, but 
at least the mechanisms are there. In contrast, while 
equal protections for hiring is a goal, it remains to be 
determined how exactly it will be formalized in various 
circumstances. Other areas, such as narrow-casting 
news and ads, are so new that regulation and public 
consensus on what should be allowed is not yet here. 

As we refine our definition of what accountability 
means in various contexts, we, as a community, will 
establish the target that our accountability methods 
must achieve.

Notes
1. arterys.com

2. See J. Wexler, The What-If Tool: Code-Free Probing of 
Machine Learning Models. https://ai.googleblog.Com/20J. 
18/09/The-what-if-Tool-code-free-probing-Of.html
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